Numerical Methods for the Optimal Control of Scalar Conservation Laws
نویسندگان
چکیده
We are interested in a class of numerical schemes for the optimization of nonlinear hyperbolic partial differential equations. We present continuous and discretized relaxation schemes for scalar, one– conservation laws. We present numerical results on tracking type problems with nonsmooth desired states and convergence results for higher– order spatial and temporal discretization schemes.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملStability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws
In this paper we present the analysis for the Runge-Kutta discontinuous Galerkin (RKDG) method to solve scalar conservation laws, where the time discretization is the third order explicit total variation diminishing Runge–Kutta (TVDRK3) method. We use an energy technique to present the L-norm stability for scalar linear conservation laws, and obtain a priori error estimates for smooth solutions...
متن کاملSolving 1D Conservation Laws Using Pontryagin's Minimum Principle
This paper discusses a connection between scalar convex conservation laws and Pontryagin’s minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is eq...
متن کاملNumerical Schemes for Conservation Laws via Hamilton - Jacobi Equations
We present some difference approximation schemes which converge to the entropy solution of a scalar conservation law having a convex flux. The numerical methods described here take their origin from approximation schemes for Hamilton-Jacobi-Bellman equations related to optimal control problems and exhibit several interesting features: the convergence result still holds for quite arbitrary time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011